CONVECTIVE HEAT TRANSFER IN THE NONSTATIONARY
MOTION OF A MAXWELLIAN FLUID BETWEEN
PARALLEL PLANES

Z. P. Shul'man and E. A. Zalttsgendler UDC 536.25:532.135

The convective heat-transfer problem is investigated for a Maxwellian fluid in generalized
Couette flow in the case of large transient times for the process.

The problems of viscoelastic fluid flow have been handled rather successfully in recent years. The
hydrodynamical aspects of the problem have been covered in a great many papers, of which we cite [1-4].
The authors of these papers have investigated the flow of both linear viscoelastic media (Maxwellian model)
and more complex nonlinear viscoelastic fluids. However, the problems of convective heat transfer in
the motion of viscoelastic fluids has been almost completely ignored; only in [5] has the heat-transfer prob-
lem been solved for a free-convective flow of a viscoelastic fluid. Viscoelastic properties are inherent in
many polymer solutions and melts, lending considerable practical significance to the problems of con-
vective heat transfer in the motion of viscoelastic fluids. In the present article we adopt the simple
rheological model of Maxwell as our model of a viscoelastic fluid; the flow geometry is characterized by
the conditions of the generalized Coutte problem.

We choose a coordinate system oxy so that the plane y = 0 is congruent with the lower plane, which
is assumed to be at rest, the x axis is directed along the motion of the upper plane, and the y axis is per-
pendicular to the planes. We assume that att < 0 the medium is at rest and its temperature is constant;
att = 0 the upper plane begins to move, and simultaneously a longitudinal pressure gradient and thermal
field are applied (the wall temperature jumps abruptly to Ty and remains constant thereafter, forming
boundary conditions of the first kind). We neglect axial heat propagation. This formulation corresponds
to the following mathematical statement of the problem:

a) equation of motion and rheological model equation [6, 7]:

_p  ov 0
dx  dy o’ (1)
ot ou
00— fT1=p —
ot + # dy
subject to the boundary conditions
u®@, y) =0, u(t, OV=0; u{f, H=U; (2
b) thermal-conduction equation:
o  ,or_,oT 3)

ot + ox oy?
subject to the initial and boundary conditions

TO x, =Ty TE O, 9)=Ty T x 0)=T,; (4)
T, x, i) =T,.
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We confine the ensuing analysis to the case of constant p, u, and 6. In this formulation the rheo-
dynamical problem is autonomous and is solved independently of the thermodynamical problem.

A. Rheodynamics

The solution of the set of Egs. (1) under the initial and boundary conditions (2) for the case of a con-
stant longitudinal pressure gradient

gﬂ = P = const >0
dx

can be obtained by superposition of the solutions for simple Couette flow and flow in a plane tube, from

[7]:
ult, y=U [%—l——z— exp (—%) E L:mﬂ"i (chrmt
m=1

20r,, h 2u i3 20
Y 1— (=D 1 . may
X E R [chrmt +sh rmt(ermﬁ-i—e;;)] sin T} , 5)
m=1
where
1 47*m0 8

As t — « the velocity profile of the viscoelastic medium goes over to the steady-state velocity distribution
of the generalized Couette problem for a viscous fluid:

Y P (7)
U=lp=U->—— ylh—y).
u o y{( Y)

We analyze the configuration of the velocity profile for large times. We introduce the parameter

27°H
K= 8
e ®
to obtain, assuming K « 1,
! K )
= —(1—K+ —|.
1T o ( T )
Retaining only the first terms of the series, we have
U= e — AeXp (——b %) sin%y—, (10)

where

A=3[2+K U_ng};
b 2 o
po K=K

2 .

(11)

Let us estimate the order of magnitude of t;, for which it is admissible to retain only the first term
in the series. It follows from Eq. (5) that at a fixed time the velocity profile for Poiseuille flow [the second
series in Eq. (5)] is more precisely approximated by retention of just the first term of the series than the
profile for Couette flow [the first series in Eq. (5)]. Therefore, the time is estimated from the first series.
The calculations indicate that for

20 e (12)
K 2,

o
U
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the first rejected term is an order of magnitude smaller than the first term of the first series, and the
latter term, on the otherhand, is considerably smaller than U(y/h) for large times. Consequently, for
t > t,, where t; is determined by condition (12), it is permissible to approximate the velocity profile (5)
by the distribution (10).

B. Heat Transfer

We introduce the dimensionless variables and parameters

To—T, 8 A (13)
2

u X
LI.I:—_—-‘——" xr

’

= = mi=

U Ue 0
(we omit the primes from the ensuing calculations). The substitution of (13) into (3) and ¢) and into (10)
and (11), respectively, yields the equation

o T _ 0T (14)

7 T

subject to the initial and boundary conditions
T(O! x? y) :lr T(t’ X, 0) = Ov (15)
T¢ 0, yy=1, T % 1)=0,

where

u=u(t, y) =t (@) — o 1) (16a)

7 Uas (16b)

v(t, y)= Aexp(— b)) sinmy; (17)

U () =y — i y(1—y) (18)

2ul
A=_2_[2:u<_2ﬁ_f;]. (19)
mn 2 n? Up

The integration of Eq. (14) in the general case is difficult. We therefore seek an approximate solution of
the problem for large times. We represent T, x, y) in the form

T % ) =T, Yy—o X Y (20a)
(for large times T = To; @& To): (20b)

We find the stationary temperature distribution from the solution of the equation

0T » 0*T»
Uy L2 =t L2 21
@) ™ o7 21)
subject to the boundary conditions
Ta@©, D=1; To(x, 0)=0; Tu(x, 1)=0. (22)

Equation (21) with the boundary conditions (22) is solved by the separation of variables {Fourier method)
[8]. In view of the difficulties associated with finding the exact eigenvalues and eigenvectors we use an
approximative method, namely the so-called WKB (Wentzel —Kramers —Brillouin), or phase~integral,
method used in [9-11]. The solution of problem (21) has the form

Ta(t, §) = ¥ Cutbn () exp [— &2 m]. (23)
n=0

The eigenfunctions are determined from the equation

-1l>” () + e () P() =0 (24)
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subject to the boundary conditions

Pp(0) =0; (252)
Y (l)=0. (25b)

The condition for the entry temperature T(t, 0, y) =1 is correctly stated only in the case of a low counter-
pressure:

U v
P<2p . (26)
Regarding € as a large parameter, we apply the first-order WKB approximation [12]:

1
P ()= W {Alexp [ia S Ve () dy] + B, exp [- i€ j Vi ) dy]} ; (27)
y

Under condition (26) uw(y) > 0 everywhere in the channel, i.e., we have only one turning poing [13], y
=0, because u(0) = 0. Representing the solution in the form
1 P TR
Y) = {Asiﬂ [8 5 Vs (y) dy] + B cos [s 5 Vo (y) dy H ; (28)
e ] ; . |
Y

we obtain the following upon satisfaction of (25b):

sin [sf Vta () dy]
Ply) = 81/y2 [

o (9)] “

Inasmuch as y = 0 is a turning point, in the vicinity of that point the WKB approximation is inapplicable.
For small y we linearize the velocity profile, whereupon, taking the condition of nondetachment at the wall
into account, we obtain

U () = U (O) + 0, (O)y + ... =u, (0. (30)
The substitution of (30) into (24) leads to the equation
V' (y) 4 &2yu,, (0) Y (y) = 0, (31)
whose solution can be represented in terms of Bessel functions:
— ) —_— ~
P =C V5 H— V05" ] +D Vi [2% Vi, © yﬂ . (32)

For large £ (such that sy3/ 2 is large for small y) we have the following asymptotic representation of the
Bessel functions [14]:

2 e R -
Jis [—;‘ Vu,0) ya/2] = ‘/~——-—»————3 cos [?g— Vu, 0y — S_nJ ,

O 12
neVu, 0y .
2 L= 3] 3 28 Vo) —
Joi [—3 Vu_ Oy ] = ‘/W cos [ 3 Vu_ (0) 12] .

The insertion of (33) into (32) and "matching® of the WKB solution to the solution obtained near the turning
point with regard for the boundary condition (25a) gives us the representations we seek for the eivenvalues:

1

snz(n+%)n[§v’mw]—l (34)
¢

and the coefficients:
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1

c=2 ]S/n cos {e S Vit (y) dy — i] ,
1]

12 (35)

D =0.

As a resuit, the eigenfunctions in the interval 0 < y = 1/4 are found from (32) with (34) and (35) taken into
account, and in the interval 1/4 < y < 1 from (29) and (34) (the choice of y =1/4 as the crossover is con-
ditional).

We now determine the nonstationary temperature "defect." Upon substitution of (16a) and (20a) into
(14) with regard for the stationary-temperature equation (21) and omission of the term containing the
product of small quantities (v8y/9x), we obfain the equation we are after:

Og e 2 9 00 36
Lotu () —m o =—vult, ) — . (36)
3 + te (9) p» 5 {t 9 F»

We find the boundary conditions from (16a) and (22):
glt, 0, =0, @lt, x, O=0; @@ x )=0. (37)

Physical conditions indicate that it is necessary to impose a condition on the time for ¢ as t — =, because
for small values of t the assumptions (16b) and (20b), which were injected into the scheme of the solution,
are inapplicable. It is clear that

lpl[_am = 0' (38)
The right-hand side of Eq. (36) can be determined from (17) and {23). As a result,
O dp oy . d
by () X —mp L — 4 —b 22 e 39
~ (%) 5" o exp [— b1 sin 5y ’;0 Co&2m™p,, (y) exp [— e2m?x]. (39)

We seek the solution of (39) in the form
ol %, y) = exp[—bt] 0, (x, y). (40)

Condition (38) is now satisfied automatically. For the function 4 (x, y} we deduce the equation

@0

2

mzie_l_ — Uy (Y % L BB, = E fr () exp [— &} m«], 41
Jy? ox
k=0
in which

Fr () = AC, sin my e2 m™p, () (42)

subject to the boundary conditions
8,0, ) =0, 6, (x, 0)=0; 6,(x, I)=0. (43)

The solution of the inhomogeneous equation (@1) under the homogeneous boundary conditions ¢3) is found
as a Fourier series on the eigenfunctions of the corresponding homogeneous equation:

0,05 ) = 3 D (hns 2) 1 6) X (0. (44)

n=0
The corresponding homogeneous equation

me ) D0, —0 (45)
o0x
is solved by the Fourier method. For the eigenfunction we obtain
" 1
W)+ — [0+ Mue 9] 4109 =05 (46)

P (0)=0; (1) =0. (47)

Since m is a small quantity, we seek the solution of 46) by the WKB method. We obtain as a result
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1
sin [ S Vo F+au. dy] cos [i- 5‘ Al dy]
m
y

‘P1=A + B

m—l/z b+ Nun)? (48)

m 2 : (b + Aug)*

Inasmuch 28 uw(y) > 0 for 0 < y < 1, there is no turning point for the solution {48), because b > 0. Once
@7 is satisfied, we have

B=20
and
1 1
in | — b+ Au. (y) =
sin [m Y Vb + s (y) dy] 0, (49)
)
whence
1
s‘ Vb AU« (y) dy = nam., (50)

0
The solution of (50) for Ap gives us the representation we seek for the eigenvalues. The eigenfunctions in
the entire channel are found from the relation

sin { S Vb +A2ua () dy]
Pin = __l_ . (51)
2

m b+ A2us (4]

To find the coefficients Dy, in Eq. (44) we expand the function

L@ (52)
e (4)

where fi(y) is determined by Eq. 42), in a Fourier series on the complete system of orthogonal functions
P1n(y):

o (9) =

P () = 3, @nathin (), (53)

n=0

where

fh ) [b + A2t (y)] Pyn (y) dy
g e )
pyp = . (54)

ﬁ b2 ) [0+ Rue ()] d

The insertion of (53) and (44) into 1) with regard for the eigenfunction equation (46) yields the following
equation for Dy after suitable algebraic transformations:

o~ 2 G €Xp (— €2 12X -+ 120) (55)

subject to the boundary conditions
D, (0) = 0. (56)

The integration of (55) and satisfaction of (56) yield

}‘ P - (exp (A — ez m?) x] —1] . (67
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As a result, we obtain the desired temperature distribution:

tity | P|.

Rel
B

RO e o 30 9T
=3

MR
€

el

O =3 o U1 B W o

11.

12.

13.
14.

T % y) = E Catpn (y) exp (— &2 m?x)

n=0

)

O,y eXp [— A2 %]

2
7\,,3 — &g m?

— exp(— bf) {exp [(A2 — &2 m?) x]— 1} Wy, (1), (58)

k=0 n=0

This solution is also applicable to the case P < 0. In this case there are no constraints on the quan-

2 <R O

Z >0

NOTATION

are the axes of the Cartesian coordinate system;

is the pressure;

is the shear stress;

is the density of the medium;

are the dimensionless quantities;

is the relaxation time;

is the projection of velocity on the x axis;

is the separation of the bounding planes;

is the velocity of the upper plane;

is the temperature of the medium at entry or initial temperature;

is the longitudinal pressure gradient;

is the wall temperature of the channel;

is the thermal diffusivity;

is the stationary temperature distribution;

is the stationary velocity profile;

is the nonstationary temperature "defect™;

is the nonstationary velocity "defect";

are the eigenvalues and eigenfunctions of the Sturm —Liouville problem (stationary case);
are the Bessel functions of the first kind;

arethe eigenvalues of the Sturm — Liouville problem (nonstationary case).
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